Cremona's table of elliptic curves

Curve 12397l1

12397 = 72 · 11 · 23



Data for elliptic curve 12397l1

Field Data Notes
Atkin-Lehner 7- 11- 23- Signs for the Atkin-Lehner involutions
Class 12397l Isogeny class
Conductor 12397 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 225792 Modular degree for the optimal curve
Δ 10209462571 = 79 · 11 · 23 Discriminant
Eigenvalues  1 -1 -1 7- 11-  7 -6 -7 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-11802508,-15611564359] [a1,a2,a3,a4,a6]
j 4505721246665691247/253 j-invariant
L 0.65162233386714 L(r)(E,1)/r!
Ω 0.081452791733393 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 111573t1 12397k1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations