Cremona's table of elliptic curves

Curve 12496d1

12496 = 24 · 11 · 71



Data for elliptic curve 12496d1

Field Data Notes
Atkin-Lehner 2- 11+ 71+ Signs for the Atkin-Lehner involutions
Class 12496d Isogeny class
Conductor 12496 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 7776 Modular degree for the optimal curve
Δ 387076096 = 212 · 113 · 71 Discriminant
Eigenvalues 2-  0 -1 -3 11+  1 -3  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-12928,-565776] [a1,a2,a3,a4,a6]
j 58338840674304/94501 j-invariant
L 0.44773058342228 L(r)(E,1)/r!
Ω 0.44773058342228 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 781b1 49984p1 112464bj1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations