Cremona's table of elliptic curves

Curve 125400bs1

125400 = 23 · 3 · 52 · 11 · 19



Data for elliptic curve 125400bs1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 11- 19+ Signs for the Atkin-Lehner involutions
Class 125400bs Isogeny class
Conductor 125400 Conductor
∏ cp 480 Product of Tamagawa factors cp
deg 1320960 Modular degree for the optimal curve
Δ 75527629763058000 = 24 · 310 · 53 · 116 · 192 Discriminant
Eigenvalues 2+ 3- 5- -4 11-  0 -6 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,-140563,15335378] [a1,a2,a3,a4,a6]
Generators [-406:2376:1] [-307:5445:1] Generators of the group modulo torsion
j 153571228698232832/37763814881529 j-invariant
L 13.311304464925 L(r)(E,1)/r!
Ω 0.32315302983191 Real period
R 0.34326627639185 Regulator
r 2 Rank of the group of rational points
S 0.99999999957243 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 125400ci1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations