Cremona's table of elliptic curves

Curve 125775bl1

125775 = 32 · 52 · 13 · 43



Data for elliptic curve 125775bl1

Field Data Notes
Atkin-Lehner 3- 5- 13- 43- Signs for the Atkin-Lehner involutions
Class 125775bl Isogeny class
Conductor 125775 Conductor
∏ cp 36 Product of Tamagawa factors cp
deg 677376 Modular degree for the optimal curve
Δ 1029923689933125 = 313 · 54 · 13 · 433 Discriminant
Eigenvalues -2 3- 5-  3 -1 13-  4 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-25275,-89244] [a1,a2,a3,a4,a6]
Generators [890:26122:1] Generators of the group modulo torsion
j 3919129907200/2260463517 j-invariant
L 3.98247917396 L(r)(E,1)/r!
Ω 0.41283694384382 Real period
R 0.26796153639661 Regulator
r 1 Rank of the group of rational points
S 0.99999999769687 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 41925q1 125775q1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations