Cremona's table of elliptic curves

Curve 125840bw1

125840 = 24 · 5 · 112 · 13



Data for elliptic curve 125840bw1

Field Data Notes
Atkin-Lehner 2- 5+ 11- 13- Signs for the Atkin-Lehner involutions
Class 125840bw Isogeny class
Conductor 125840 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 304128 Modular degree for the optimal curve
Δ 1114666181200 = 24 · 52 · 118 · 13 Discriminant
Eigenvalues 2- -1 5+ -2 11- 13- -3  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-72761,-7529960] [a1,a2,a3,a4,a6]
Generators [-156:2:1] [1028:31670:1] Generators of the group modulo torsion
j 12421218304/325 j-invariant
L 8.8617033884287 L(r)(E,1)/r!
Ω 0.29068664153499 Real period
R 15.242708340771 Regulator
r 2 Rank of the group of rational points
S 0.99999999971519 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 31460f1 125840bk1 Quadratic twists by: -4 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations