Cremona's table of elliptic curves

Curve 126126fc1

126126 = 2 · 32 · 72 · 11 · 13



Data for elliptic curve 126126fc1

Field Data Notes
Atkin-Lehner 2- 3- 7- 11+ 13- Signs for the Atkin-Lehner involutions
Class 126126fc Isogeny class
Conductor 126126 Conductor
∏ cp 28 Product of Tamagawa factors cp
deg 301056 Modular degree for the optimal curve
Δ -18589244978304 = -1 · 27 · 313 · 72 · 11 · 132 Discriminant
Eigenvalues 2- 3- -1 7- 11+ 13-  7  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,5692,-126745] [a1,a2,a3,a4,a6]
Generators [45:445:1] Generators of the group modulo torsion
j 571039705271/520401024 j-invariant
L 11.05502649256 L(r)(E,1)/r!
Ω 0.37739786590049 Real period
R 1.0461701298362 Regulator
r 1 Rank of the group of rational points
S 1.0000000009251 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 42042bm1 126126eg1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations