Cremona's table of elliptic curves

Curve 126882t2

126882 = 2 · 32 · 7 · 19 · 53



Data for elliptic curve 126882t2

Field Data Notes
Atkin-Lehner 2+ 3- 7- 19+ 53+ Signs for the Atkin-Lehner involutions
Class 126882t Isogeny class
Conductor 126882 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 8.9496050766355E+20 Discriminant
Eigenvalues 2+ 3-  0 7-  4 -4 -6 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-4891572,3908656080] [a1,a2,a3,a4,a6]
Generators [969:8340:1] Generators of the group modulo torsion
j 17755854799297058466625/1227655017371123712 j-invariant
L 5.1406592383462 L(r)(E,1)/r!
Ω 0.15457219425319 Real period
R 4.1571668110555 Regulator
r 1 Rank of the group of rational points
S 1.0000000139 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 42294y2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations