Cremona's table of elliptic curves

Curve 12765d1

12765 = 3 · 5 · 23 · 37



Data for elliptic curve 12765d1

Field Data Notes
Atkin-Lehner 3+ 5- 23+ 37- Signs for the Atkin-Lehner involutions
Class 12765d Isogeny class
Conductor 12765 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 14800 Modular degree for the optimal curve
Δ -14863246875 = -1 · 35 · 55 · 232 · 37 Discriminant
Eigenvalues  0 3+ 5-  0  2  1  0 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-18375,964883] [a1,a2,a3,a4,a6]
Generators [59:287:1] Generators of the group modulo torsion
j -686166309029380096/14863246875 j-invariant
L 3.5244188170766 L(r)(E,1)/r!
Ω 1.1517276308305 Real period
R 0.30601148420265 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 38295f1 63825n1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations