Cremona's table of elliptic curves

Curve 127680gd2

127680 = 26 · 3 · 5 · 7 · 19



Data for elliptic curve 127680gd2

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 19- Signs for the Atkin-Lehner involutions
Class 127680gd Isogeny class
Conductor 127680 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 12780911001600 = 216 · 32 · 52 · 74 · 192 Discriminant
Eigenvalues 2- 3- 5- 7+  4 -6  6 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-29825,-1985025] [a1,a2,a3,a4,a6]
Generators [75198:3961405:27] Generators of the group modulo torsion
j 44771299477636/195021225 j-invariant
L 9.8061716290781 L(r)(E,1)/r!
Ω 0.36338504337374 Real period
R 6.746405633701 Regulator
r 1 Rank of the group of rational points
S 1.0000000014074 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 127680bn2 31920a2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations