Cremona's table of elliptic curves

Curve 127920z1

127920 = 24 · 3 · 5 · 13 · 41



Data for elliptic curve 127920z1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 13+ 41- Signs for the Atkin-Lehner involutions
Class 127920z Isogeny class
Conductor 127920 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 7787520 Modular degree for the optimal curve
Δ -497057786986475520 = -1 · 212 · 313 · 5 · 135 · 41 Discriminant
Eigenvalues 2- 3+ 5+  0  6 13+  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-37858101,-89644831875] [a1,a2,a3,a4,a6]
Generators [47063837176609101303633116102618304846946776905469835975093234311004840401031314973011867652008467055989527854440581332123179203718684:3001788621103414385068992563641552381301446962787268493605522619951017391583083550361926064987453439384668580811187875305728693938216573:5101341195133171518913404010065172817428915367079938420006649261509127592226060911129899174849924257628220919172684984827276567239] Generators of the group modulo torsion
j -1465008863451482304446464/121351998775995 j-invariant
L 6.3470138592046 L(r)(E,1)/r!
Ω 0.030431954751548 Real period
R 208.56411988723 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7995g1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations