Cremona's table of elliptic curves

Curve 128772n1

128772 = 22 · 32 · 72 · 73



Data for elliptic curve 128772n1

Field Data Notes
Atkin-Lehner 2- 3- 7- 73- Signs for the Atkin-Lehner involutions
Class 128772n Isogeny class
Conductor 128772 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 389836800 Modular degree for the optimal curve
Δ -3.8653392318843E+23 Discriminant
Eigenvalues 2- 3-  4 7- -6 -3 -4 -3 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-88291179543,-10097737856061730] [a1,a2,a3,a4,a6]
Generators [3186046884464674933362428856610745306006395638178799738946750290912580519972767092510815486383346921308972933624190286640118977074101080442894302021205743188970:208838667367466421183373705437415931822887636150087371169220184169998562075992402724864247941136746732939973085819547070825101869647959121125148927737294810626360:9234318037534727474114495214933341230560158698321261242264569239679456388933413767334793863264375333848098056558901823781208404431296562529535279726197633] Generators of the group modulo torsion
j -3466729332466825523374801744/17604831836277 j-invariant
L 8.4898234826203 L(r)(E,1)/r!
Ω 0.0043791541125723 Real period
R 242.33628414237 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 42924c1 18396i1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations