Cremona's table of elliptic curves

Curve 129285w4

129285 = 32 · 5 · 132 · 17



Data for elliptic curve 129285w4

Field Data Notes
Atkin-Lehner 3- 5+ 13+ 17- Signs for the Atkin-Lehner involutions
Class 129285w Isogeny class
Conductor 129285 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 57308354544183795 = 37 · 5 · 137 · 174 Discriminant
Eigenvalues -1 3- 5+  4 -4 13+ 17-  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-1590998,772729962] [a1,a2,a3,a4,a6]
Generators [-1420:13638:1] Generators of the group modulo torsion
j 126574061279329/16286595 j-invariant
L 4.3818715209054 L(r)(E,1)/r!
Ω 0.33944574275979 Real period
R 1.6136126168559 Regulator
r 1 Rank of the group of rational points
S 1.0000000125206 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 43095f4 9945k3 Quadratic twists by: -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations