Cremona's table of elliptic curves

Curve 129360es1

129360 = 24 · 3 · 5 · 72 · 11



Data for elliptic curve 129360es1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7+ 11- Signs for the Atkin-Lehner involutions
Class 129360es Isogeny class
Conductor 129360 Conductor
∏ cp 132 Product of Tamagawa factors cp
deg 69189120 Modular degree for the optimal curve
Δ -2.6193290591217E+27 Discriminant
Eigenvalues 2- 3+ 5- 7+ 11- -4  7 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-568804560,-5772764755008] [a1,a2,a3,a4,a6]
j -861923363555648023441/110929177533556800 j-invariant
L 2.0257829077458 L(r)(E,1)/r!
Ω 0.015346845721365 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 16170cc1 129360gt1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations