Cremona's table of elliptic curves

Curve 129360ha3

129360 = 24 · 3 · 5 · 72 · 11



Data for elliptic curve 129360ha3

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7- 11- Signs for the Atkin-Lehner involutions
Class 129360ha Isogeny class
Conductor 129360 Conductor
∏ cp 384 Product of Tamagawa factors cp
Δ -4.2875922098718E+24 Discriminant
Eigenvalues 2- 3- 5+ 7- 11- -6 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-17081416,103257762740] [a1,a2,a3,a4,a6]
Generators [44:320166:1] Generators of the group modulo torsion
j -1143792273008057401/8897444448004035 j-invariant
L 7.5183404676763 L(r)(E,1)/r!
Ω 0.066722131215117 Real period
R 1.1737641677236 Regulator
r 1 Rank of the group of rational points
S 0.99999999647373 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8085f4 18480cf4 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations