Cremona's table of elliptic curves

Curve 129948z1

129948 = 22 · 3 · 72 · 13 · 17



Data for elliptic curve 129948z1

Field Data Notes
Atkin-Lehner 2- 3- 7- 13+ 17- Signs for the Atkin-Lehner involutions
Class 129948z Isogeny class
Conductor 129948 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 110592 Modular degree for the optimal curve
Δ 63649050192 = 24 · 32 · 76 · 13 · 172 Discriminant
Eigenvalues 2- 3-  0 7- -4 13+ 17- -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1633,21776] [a1,a2,a3,a4,a6]
Generators [-1:153:1] Generators of the group modulo torsion
j 256000000/33813 j-invariant
L 8.2951849497659 L(r)(E,1)/r!
Ω 1.0639096730468 Real period
R 1.2994814053156 Regulator
r 1 Rank of the group of rational points
S 0.99999999124885 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 2652c1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations