Cremona's table of elliptic curves

Curve 13110br1

13110 = 2 · 3 · 5 · 19 · 23



Data for elliptic curve 13110br1

Field Data Notes
Atkin-Lehner 2- 3- 5- 19- 23+ Signs for the Atkin-Lehner involutions
Class 13110br Isogeny class
Conductor 13110 Conductor
∏ cp 1260 Product of Tamagawa factors cp
deg 362880 Modular degree for the optimal curve
Δ 2.672384016384E+19 Discriminant
Eigenvalues 2- 3- 5-  0 -2 -6  2 19- Hecke eigenvalues for primes up to 20
Equation [1,0,0,-1006175,-298494375] [a1,a2,a3,a4,a6]
Generators [-650:9325:1] Generators of the group modulo torsion
j 112653400663484247769201/26723840163840000000 j-invariant
L 8.6866698038923 L(r)(E,1)/r!
Ω 0.15333124918569 Real period
R 0.17985068068395 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 104880bw1 39330q1 65550j1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations