Cremona's table of elliptic curves

Curve 13120l1

13120 = 26 · 5 · 41



Data for elliptic curve 13120l1

Field Data Notes
Atkin-Lehner 2+ 5+ 41- Signs for the Atkin-Lehner involutions
Class 13120l Isogeny class
Conductor 13120 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 6144 Modular degree for the optimal curve
Δ 268697600 = 218 · 52 · 41 Discriminant
Eigenvalues 2+  0 5+ -4  0  2 -6  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-1388,19888] [a1,a2,a3,a4,a6]
Generators [-3:155:1] [4:120:1] Generators of the group modulo torsion
j 1128111921/1025 j-invariant
L 5.703902942481 L(r)(E,1)/r!
Ω 1.7317874412392 Real period
R 1.6468253570427 Regulator
r 2 Rank of the group of rational points
S 0.99999999999992 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 13120bi1 205a1 118080ci1 65600r1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations