Cremona's table of elliptic curves

Curve 13200d1

13200 = 24 · 3 · 52 · 11



Data for elliptic curve 13200d1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 11+ Signs for the Atkin-Lehner involutions
Class 13200d Isogeny class
Conductor 13200 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 1920 Modular degree for the optimal curve
Δ -844800 = -1 · 210 · 3 · 52 · 11 Discriminant
Eigenvalues 2+ 3+ 5+  1 11+ -4 -3 -5 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-88,352] [a1,a2,a3,a4,a6]
Generators [6:2:1] Generators of the group modulo torsion
j -2977540/33 j-invariant
L 3.7278921294345 L(r)(E,1)/r!
Ω 2.8281520595773 Real period
R 0.65906854562687 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6600o1 52800gx1 39600z1 13200bd1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations