Cremona's table of elliptic curves

Curve 13244a1

13244 = 22 · 7 · 11 · 43



Data for elliptic curve 13244a1

Field Data Notes
Atkin-Lehner 2- 7+ 11+ 43+ Signs for the Atkin-Lehner involutions
Class 13244a Isogeny class
Conductor 13244 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 129024 Modular degree for the optimal curve
Δ -82124675445139712 = -1 · 28 · 714 · 11 · 43 Discriminant
Eigenvalues 2- -3  0 7+ 11+  0 -2 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,17585,-13758554] [a1,a2,a3,a4,a6]
j 2349150628302000/320799513457577 j-invariant
L 0.32352703427849 L(r)(E,1)/r!
Ω 0.16176351713924 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 52976bd1 119196h1 92708c1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations