Cremona's table of elliptic curves

Curve 1330c1

1330 = 2 · 5 · 7 · 19



Data for elliptic curve 1330c1

Field Data Notes
Atkin-Lehner 2+ 5+ 7- 19+ Signs for the Atkin-Lehner involutions
Class 1330c Isogeny class
Conductor 1330 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 240 Modular degree for the optimal curve
Δ 2723840 = 212 · 5 · 7 · 19 Discriminant
Eigenvalues 2+  0 5+ 7-  4  2 -2 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-35,21] [a1,a2,a3,a4,a6]
j 4818245769/2723840 j-invariant
L 1.100105909368 L(r)(E,1)/r!
Ω 2.200211818736 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 10640l1 42560bp1 11970cf1 6650r1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations