Cremona's table of elliptic curves

Curve 13320d2

13320 = 23 · 32 · 5 · 37



Data for elliptic curve 13320d2

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 37- Signs for the Atkin-Lehner involutions
Class 13320d Isogeny class
Conductor 13320 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 11640683664000000 = 210 · 312 · 56 · 372 Discriminant
Eigenvalues 2+ 3- 5+  0  0  6 -2 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2997003,-1996997002] [a1,a2,a3,a4,a6]
Generators [5393265469046:17845675179444:2691419471] Generators of the group modulo torsion
j 3988023972023988004/15593765625 j-invariant
L 4.5292717008639 L(r)(E,1)/r!
Ω 0.11474343901993 Real period
R 19.736517135752 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 26640g2 106560ck2 4440g2 66600bk2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations