Cremona's table of elliptic curves

Curve 13398bj3

13398 = 2 · 3 · 7 · 11 · 29



Data for elliptic curve 13398bj3

Field Data Notes
Atkin-Lehner 2- 3- 7- 11+ 29- Signs for the Atkin-Lehner involutions
Class 13398bj Isogeny class
Conductor 13398 Conductor
∏ cp 128 Product of Tamagawa factors cp
Δ 80403112944 = 24 · 38 · 74 · 11 · 29 Discriminant
Eigenvalues 2- 3- -2 7- 11+  2  2 -8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-27304,1734224] [a1,a2,a3,a4,a6]
Generators [-46:1724:1] Generators of the group modulo torsion
j 2251145324089097857/80403112944 j-invariant
L 7.7791881431071 L(r)(E,1)/r!
Ω 1.0136031584192 Real period
R 0.95934835030008 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 107184bp4 40194t4 93786by4 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations