Cremona's table of elliptic curves

Curve 13416f1

13416 = 23 · 3 · 13 · 43



Data for elliptic curve 13416f1

Field Data Notes
Atkin-Lehner 2- 3- 13+ 43+ Signs for the Atkin-Lehner involutions
Class 13416f Isogeny class
Conductor 13416 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 3840 Modular degree for the optimal curve
Δ 50229504 = 28 · 33 · 132 · 43 Discriminant
Eigenvalues 2- 3- -2  2  2 13+  2  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-404,2976] [a1,a2,a3,a4,a6]
Generators [-14:78:1] Generators of the group modulo torsion
j 28556329552/196209 j-invariant
L 5.5788118526465 L(r)(E,1)/r!
Ω 2.0143894377319 Real period
R 0.46158004903362 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 26832c1 107328m1 40248f1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations