Cremona's table of elliptic curves

Curve 1365a2

1365 = 3 · 5 · 7 · 13



Data for elliptic curve 1365a2

Field Data Notes
Atkin-Lehner 3+ 5+ 7+ 13- Signs for the Atkin-Lehner involutions
Class 1365a Isogeny class
Conductor 1365 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 12224619225 = 310 · 52 · 72 · 132 Discriminant
Eigenvalues  1 3+ 5+ 7+  0 13-  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-1078,12103] [a1,a2,a3,a4,a6]
j 138742439989609/12224619225 j-invariant
L 1.2356741351268 L(r)(E,1)/r!
Ω 1.2356741351268 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 21840by2 87360ct2 4095l2 6825j2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations