Cremona's table of elliptic curves

Curve 13680bh4

13680 = 24 · 32 · 5 · 19



Data for elliptic curve 13680bh4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19- Signs for the Atkin-Lehner involutions
Class 13680bh Isogeny class
Conductor 13680 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ 1702010880 = 213 · 37 · 5 · 19 Discriminant
Eigenvalues 2- 3- 5+ -4 -4 -2  2 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-437763,111482498] [a1,a2,a3,a4,a6]
Generators [383:34:1] [431:1694:1] Generators of the group modulo torsion
j 3107086841064961/570 j-invariant
L 5.8041335616598 L(r)(E,1)/r!
Ω 0.86631329633982 Real period
R 6.699808933077 Regulator
r 2 Rank of the group of rational points
S 0.99999999999982 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 1710d3 54720eq4 4560u3 68400fs4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations