Cremona's table of elliptic curves

Curve 13950ck1

13950 = 2 · 32 · 52 · 31



Data for elliptic curve 13950ck1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 31+ Signs for the Atkin-Lehner involutions
Class 13950ck Isogeny class
Conductor 13950 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 69120 Modular degree for the optimal curve
Δ -1287083671875000 = -1 · 23 · 312 · 510 · 31 Discriminant
Eigenvalues 2- 3- 5+  3 -5  3 -4  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,19570,1362197] [a1,a2,a3,a4,a6]
Generators [-57:271:1] Generators of the group modulo torsion
j 116436575/180792 j-invariant
L 7.6969152306877 L(r)(E,1)/r!
Ω 0.32913289779759 Real period
R 1.9487860583045 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 111600fk1 4650p1 13950bl1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations