Cremona's table of elliptic curves

Curve 14022j1

14022 = 2 · 32 · 19 · 41



Data for elliptic curve 14022j1

Field Data Notes
Atkin-Lehner 2- 3- 19- 41- Signs for the Atkin-Lehner involutions
Class 14022j Isogeny class
Conductor 14022 Conductor
∏ cp 176 Product of Tamagawa factors cp
deg 152064 Modular degree for the optimal curve
Δ 16337503493554176 = 222 · 36 · 194 · 41 Discriminant
Eigenvalues 2- 3-  2 -2  0 -4  2 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-995699,382618963] [a1,a2,a3,a4,a6]
Generators [539:1250:1] Generators of the group modulo torsion
j 149754536662333268457/22410841554944 j-invariant
L 7.6410870577859 L(r)(E,1)/r!
Ω 0.37800878673219 Real period
R 0.45941013963299 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 112176r1 1558a1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations