Cremona's table of elliptic curves

Curve 14145a4

14145 = 3 · 5 · 23 · 41



Data for elliptic curve 14145a4

Field Data Notes
Atkin-Lehner 3+ 5- 23+ 41- Signs for the Atkin-Lehner involutions
Class 14145a Isogeny class
Conductor 14145 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ 1014826447575 = 316 · 52 · 23 · 41 Discriminant
Eigenvalues -1 3+ 5- -4  0  6  6  0 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-125870,17135732] [a1,a2,a3,a4,a6]
Generators [217:206:1] Generators of the group modulo torsion
j 220541652490573594081/1014826447575 j-invariant
L 2.46456072213 L(r)(E,1)/r!
Ω 0.77440793104916 Real period
R 3.1825096610143 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 42435b4 70725q4 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations