Cremona's table of elliptic curves

Curve 1425a1

1425 = 3 · 52 · 19



Data for elliptic curve 1425a1

Field Data Notes
Atkin-Lehner 3+ 5+ 19+ Signs for the Atkin-Lehner involutions
Class 1425a Isogeny class
Conductor 1425 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 192 Modular degree for the optimal curve
Δ 890625 = 3 · 56 · 19 Discriminant
Eigenvalues -1 3+ 5+  0  0 -6  6 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,1,-38,-94] [a1,a2,a3,a4,a6]
Generators [-4:5:1] Generators of the group modulo torsion
j 389017/57 j-invariant
L 1.5179065082248 L(r)(E,1)/r!
Ω 1.9414477255404 Real period
R 1.5636851698413 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 22800de1 91200dn1 4275e1 57b2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations