Cremona's table of elliptic curves

Curve 14280bm2

14280 = 23 · 3 · 5 · 7 · 17



Data for elliptic curve 14280bm2

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7- 17- Signs for the Atkin-Lehner involutions
Class 14280bm Isogeny class
Conductor 14280 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 38841600 = 28 · 3 · 52 · 7 · 172 Discriminant
Eigenvalues 2- 3+ 5- 7-  2 -4 17- -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-140,612] [a1,a2,a3,a4,a6]
Generators [-8:34:1] Generators of the group modulo torsion
j 1193895376/151725 j-invariant
L 4.4532065679341 L(r)(E,1)/r!
Ω 1.973968606269 Real period
R 0.56399156422642 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 28560br2 114240dr2 42840r2 71400ba2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations