Cremona's table of elliptic curves

Curve 14400f2

14400 = 26 · 32 · 52



Data for elliptic curve 14400f2

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ Signs for the Atkin-Lehner involutions
Class 14400f Isogeny class
Conductor 14400 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 251942400000000 = 215 · 39 · 58 Discriminant
Eigenvalues 2+ 3+ 5+ -2  2  0 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-24300,1242000] [a1,a2,a3,a4,a6]
Generators [10:1000:1] Generators of the group modulo torsion
j 157464/25 j-invariant
L 4.4846445488938 L(r)(E,1)/r!
Ω 0.52996054732709 Real period
R 1.0577779259967 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 14400e2 7200c2 14400h2 2880e2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations