Cremona's table of elliptic curves

Curve 14490bd4

14490 = 2 · 32 · 5 · 7 · 23



Data for elliptic curve 14490bd4

Field Data Notes
Atkin-Lehner 2+ 3- 5- 7- 23- Signs for the Atkin-Lehner involutions
Class 14490bd Isogeny class
Conductor 14490 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ -4641537249983340 = -1 · 22 · 36 · 5 · 712 · 23 Discriminant
Eigenvalues 2+ 3- 5- 7-  0 -6  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,21,-3277855] [a1,a2,a3,a4,a6]
Generators [259:3619:1] Generators of the group modulo torsion
j 1367631/6366992112460 j-invariant
L 3.7076963797432 L(r)(E,1)/r!
Ω 0.19928541961294 Real period
R 1.550412965043 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 115920dz3 1610c4 72450dj3 101430bk3 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations