Cremona's table of elliptic curves

Curve 14575a1

14575 = 52 · 11 · 53



Data for elliptic curve 14575a1

Field Data Notes
Atkin-Lehner 5+ 11+ 53+ Signs for the Atkin-Lehner involutions
Class 14575a Isogeny class
Conductor 14575 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 13824 Modular degree for the optimal curve
Δ -1565673828125 = -1 · 512 · 112 · 53 Discriminant
Eigenvalues  1 -1 5+  0 11+ -1  3 -1 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-1375,62750] [a1,a2,a3,a4,a6]
Generators [-10:280:1] Generators of the group modulo torsion
j -18420660721/100203125 j-invariant
L 4.0235162538125 L(r)(E,1)/r!
Ω 0.73207153285479 Real period
R 1.3740174536368 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2915c1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations