Cremona's table of elliptic curves

Curve 14628b1

14628 = 22 · 3 · 23 · 53



Data for elliptic curve 14628b1

Field Data Notes
Atkin-Lehner 2- 3- 23- 53- Signs for the Atkin-Lehner involutions
Class 14628b Isogeny class
Conductor 14628 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 42720 Modular degree for the optimal curve
Δ -68006242957104 = -1 · 24 · 320 · 23 · 53 Discriminant
Eigenvalues 2- 3-  3 -2 -4 -1  0 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-9549,532008] [a1,a2,a3,a4,a6]
Generators [36:486:1] Generators of the group modulo torsion
j -6018979848650752/4250390184819 j-invariant
L 6.3692723919701 L(r)(E,1)/r!
Ω 0.56915613209917 Real period
R 0.55953648153441 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 58512j1 43884c1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations