Cremona's table of elliptic curves

Curve 14685c1

14685 = 3 · 5 · 11 · 89



Data for elliptic curve 14685c1

Field Data Notes
Atkin-Lehner 3+ 5- 11+ 89- Signs for the Atkin-Lehner involutions
Class 14685c Isogeny class
Conductor 14685 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 3584 Modular degree for the optimal curve
Δ -32116095 = -1 · 38 · 5 · 11 · 89 Discriminant
Eigenvalues -1 3+ 5- -4 11+ -2  2  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,75,-78] [a1,a2,a3,a4,a6]
Generators [26:129:1] Generators of the group modulo torsion
j 46617130799/32116095 j-invariant
L 2.0221682414083 L(r)(E,1)/r!
Ω 1.1768008226881 Real period
R 3.4367213251759 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 44055f1 73425j1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations