Cremona's table of elliptic curves

Curve 14820c1

14820 = 22 · 3 · 5 · 13 · 19



Data for elliptic curve 14820c1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 13+ 19+ Signs for the Atkin-Lehner involutions
Class 14820c Isogeny class
Conductor 14820 Conductor
∏ cp 66 Product of Tamagawa factors cp
deg 60192 Modular degree for the optimal curve
Δ -1583887500000000 = -1 · 28 · 33 · 511 · 13 · 192 Discriminant
Eigenvalues 2- 3+ 5- -3 -1 13+  1 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,26595,929097] [a1,a2,a3,a4,a6]
Generators [-1:950:1] Generators of the group modulo torsion
j 8125823797796864/6187060546875 j-invariant
L 3.6823692041738 L(r)(E,1)/r!
Ω 0.30433917184949 Real period
R 0.18332662355441 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 59280by1 44460g1 74100z1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations