Cremona's table of elliptic curves

Curve 14840a1

14840 = 23 · 5 · 7 · 53



Data for elliptic curve 14840a1

Field Data Notes
Atkin-Lehner 2+ 5+ 7+ 53+ Signs for the Atkin-Lehner involutions
Class 14840a Isogeny class
Conductor 14840 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 254464 Modular degree for the optimal curve
Δ -3.6838941345288E+19 Discriminant
Eigenvalues 2+ -1 5+ 7+  2  1  3  1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1100456,-531334244] [a1,a2,a3,a4,a6]
Generators [2058:76916:1] Generators of the group modulo torsion
j -143926975147038505636/35975528657508125 j-invariant
L 3.4239377574743 L(r)(E,1)/r!
Ω 0.072744721258514 Real period
R 5.8834814716428 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 29680c1 118720h1 74200r1 103880j1 Quadratic twists by: -4 8 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations