Cremona's table of elliptic curves

Curve 14868d1

14868 = 22 · 32 · 7 · 59



Data for elliptic curve 14868d1

Field Data Notes
Atkin-Lehner 2- 3- 7- 59+ Signs for the Atkin-Lehner involutions
Class 14868d Isogeny class
Conductor 14868 Conductor
∏ cp 72 Product of Tamagawa factors cp
deg 16128 Modular degree for the optimal curve
Δ -728668964016 = -1 · 24 · 38 · 76 · 59 Discriminant
Eigenvalues 2- 3- -2 7- -6 -4 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,564,40745] [a1,a2,a3,a4,a6]
Generators [-22:133:1] [-8:189:1] Generators of the group modulo torsion
j 1701036032/62471619 j-invariant
L 6.1354187966659 L(r)(E,1)/r!
Ω 0.68141739798916 Real period
R 0.50021704878775 Regulator
r 2 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 59472bf1 4956a1 104076v1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations