Cremona's table of elliptic curves

Curve 15675s1

15675 = 3 · 52 · 11 · 19



Data for elliptic curve 15675s1

Field Data Notes
Atkin-Lehner 3- 5+ 11- 19+ Signs for the Atkin-Lehner involutions
Class 15675s Isogeny class
Conductor 15675 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 18432 Modular degree for the optimal curve
Δ -1760351484375 = -1 · 34 · 57 · 114 · 19 Discriminant
Eigenvalues  1 3- 5+  0 11-  2  2 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,1,2999,9023] [a1,a2,a3,a4,a6]
Generators [217:3191:1] Generators of the group modulo torsion
j 191003460479/112662495 j-invariant
L 7.1087453908682 L(r)(E,1)/r!
Ω 0.50951231327905 Real period
R 0.87200363043224 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 47025n1 3135b1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations