Cremona's table of elliptic curves

Curve 16302l1

16302 = 2 · 3 · 11 · 13 · 19



Data for elliptic curve 16302l1

Field Data Notes
Atkin-Lehner 2+ 3- 11- 13- 19- Signs for the Atkin-Lehner involutions
Class 16302l Isogeny class
Conductor 16302 Conductor
∏ cp 81 Product of Tamagawa factors cp
deg 165888 Modular degree for the optimal curve
Δ -11353560575223438 = -1 · 2 · 33 · 119 · 13 · 193 Discriminant
Eigenvalues 2+ 3-  0 -1 11- 13- -3 19- Hecke eigenvalues for primes up to 20
Equation [1,0,1,-602126,-179960074] [a1,a2,a3,a4,a6]
Generators [113148:38002705:1] Generators of the group modulo torsion
j -24142643256282491265625/11353560575223438 j-invariant
L 4.3028965763472 L(r)(E,1)/r!
Ω 0.085691066842751 Real period
R 5.5793402650883 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 3 Number of elements in the torsion subgroup
Twists 48906bl1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations