Cremona's table of elliptic curves

Curve 16695a1

16695 = 32 · 5 · 7 · 53



Data for elliptic curve 16695a1

Field Data Notes
Atkin-Lehner 3+ 5+ 7+ 53+ Signs for the Atkin-Lehner involutions
Class 16695a Isogeny class
Conductor 16695 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 5760 Modular degree for the optimal curve
Δ -912799125 = -1 · 39 · 53 · 7 · 53 Discriminant
Eigenvalues  1 3+ 5+ 7+  3 -5  2  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-15,-1450] [a1,a2,a3,a4,a6]
Generators [166:2050:1] Generators of the group modulo torsion
j -19683/46375 j-invariant
L 4.9969842647954 L(r)(E,1)/r!
Ω 0.71283462701473 Real period
R 3.5050094898744 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 16695f1 83475i1 116865g1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations