Cremona's table of elliptic curves

Curve 16770g1

16770 = 2 · 3 · 5 · 13 · 43



Data for elliptic curve 16770g1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 13+ 43+ Signs for the Atkin-Lehner involutions
Class 16770g Isogeny class
Conductor 16770 Conductor
∏ cp 280 Product of Tamagawa factors cp
deg 134400 Modular degree for the optimal curve
Δ 9933080625000000 = 26 · 37 · 510 · 132 · 43 Discriminant
Eigenvalues 2+ 3- 5-  0 -4 13+  4  4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-110293,13248608] [a1,a2,a3,a4,a6]
Generators [-56:4415:1] Generators of the group modulo torsion
j 148375399462325710921/9933080625000000 j-invariant
L 4.6042507374971 L(r)(E,1)/r!
Ω 0.40026187855347 Real period
R 0.16432994012165 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 50310br1 83850bv1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations