Cremona's table of elliptic curves

Curve 16800br2

16800 = 25 · 3 · 52 · 7



Data for elliptic curve 16800br2

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 16800br Isogeny class
Conductor 16800 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 6225985080000000 = 29 · 33 · 57 · 78 Discriminant
Eigenvalues 2- 3- 5+ 7+  0 -2  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-56008,-3427012] [a1,a2,a3,a4,a6]
Generators [-97:1050:1] Generators of the group modulo torsion
j 2428799546888/778248135 j-invariant
L 5.7951304303555 L(r)(E,1)/r!
Ω 0.31820995300587 Real period
R 3.0352761206941 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 16800g3 33600a3 50400s3 3360g2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations