Cremona's table of elliptic curves

Curve 16830bw1

16830 = 2 · 32 · 5 · 11 · 17



Data for elliptic curve 16830bw1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 11- 17- Signs for the Atkin-Lehner involutions
Class 16830bw Isogeny class
Conductor 16830 Conductor
∏ cp 520 Product of Tamagawa factors cp
deg 249600 Modular degree for the optimal curve
Δ 124021222303334400 = 226 · 33 · 52 · 115 · 17 Discriminant
Eigenvalues 2- 3+ 5- -4 11-  6 17- -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-130157,-6258219] [a1,a2,a3,a4,a6]
Generators [-81:-1896:1] Generators of the group modulo torsion
j 9031490088862377843/4593378603827200 j-invariant
L 7.4686097547531 L(r)(E,1)/r!
Ω 0.26530507346391 Real period
R 0.21654634612612 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 16830e1 84150o1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations