Cremona's table of elliptic curves

Curve 16965p1

16965 = 32 · 5 · 13 · 29



Data for elliptic curve 16965p1

Field Data Notes
Atkin-Lehner 3- 5- 13+ 29- Signs for the Atkin-Lehner involutions
Class 16965p Isogeny class
Conductor 16965 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 98304 Modular degree for the optimal curve
Δ 19224821642963625 = 322 · 53 · 132 · 29 Discriminant
Eigenvalues  1 3- 5-  2 -2 13+ -6 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-95184,9148315] [a1,a2,a3,a4,a6]
j 130824958323080449/26371497452625 j-invariant
L 2.1940201142889 L(r)(E,1)/r!
Ω 0.36567001904816 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 5655b1 84825w1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations