Cremona's table of elliptic curves

Curve 17745n1

17745 = 3 · 5 · 7 · 132



Data for elliptic curve 17745n1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 13+ Signs for the Atkin-Lehner involutions
Class 17745n Isogeny class
Conductor 17745 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 7680 Modular degree for the optimal curve
Δ 506814945 = 3 · 5 · 7 · 136 Discriminant
Eigenvalues -1 3- 5+ 7+  0 13+  2  8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-426,3171] [a1,a2,a3,a4,a6]
j 1771561/105 j-invariant
L 1.6262293906561 L(r)(E,1)/r!
Ω 1.6262293906561 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 53235bc1 88725s1 124215be1 105a1 Quadratic twists by: -3 5 -7 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations