Cremona's table of elliptic curves

Curve 17760f1

17760 = 25 · 3 · 5 · 37



Data for elliptic curve 17760f1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 37+ Signs for the Atkin-Lehner involutions
Class 17760f Isogeny class
Conductor 17760 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 2176 Modular degree for the optimal curve
Δ -2273280 = -1 · 212 · 3 · 5 · 37 Discriminant
Eigenvalues 2+ 3+ 5- -2  2  1  0  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-45,-123] [a1,a2,a3,a4,a6]
j -2515456/555 j-invariant
L 1.8185000762334 L(r)(E,1)/r!
Ω 0.90925003811671 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 17760p1 35520cq1 53280bk1 88800cf1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations