Cremona's table of elliptic curves

Curve 18200u1

18200 = 23 · 52 · 7 · 13



Data for elliptic curve 18200u1

Field Data Notes
Atkin-Lehner 2- 5+ 7- 13- Signs for the Atkin-Lehner involutions
Class 18200u Isogeny class
Conductor 18200 Conductor
∏ cp 192 Product of Tamagawa factors cp
deg 92160 Modular degree for the optimal curve
Δ 105499940000000 = 28 · 57 · 74 · 133 Discriminant
Eigenvalues 2- -2 5+ 7- -2 13- -6 -6 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-89908,10334688] [a1,a2,a3,a4,a6]
Generators [-322:2450:1] [-182:4550:1] Generators of the group modulo torsion
j 20093868785104/26374985 j-invariant
L 5.475859052927 L(r)(E,1)/r!
Ω 0.59429735555809 Real period
R 0.19195844617019 Regulator
r 2 Rank of the group of rational points
S 0.99999999999994 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 36400g1 3640b1 127400bo1 Quadratic twists by: -4 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations