Cremona's table of elliptic curves

Curve 18240cc2

18240 = 26 · 3 · 5 · 19



Data for elliptic curve 18240cc2

Field Data Notes
Atkin-Lehner 2- 3+ 5- 19+ Signs for the Atkin-Lehner involutions
Class 18240cc Isogeny class
Conductor 18240 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ 700416000000 = 218 · 32 · 56 · 19 Discriminant
Eigenvalues 2- 3+ 5-  2 -2  4  2 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-5985,175617] [a1,a2,a3,a4,a6]
Generators [29:160:1] Generators of the group modulo torsion
j 90458382169/2671875 j-invariant
L 5.153556010394 L(r)(E,1)/r!
Ω 0.90069341391831 Real period
R 0.4768137461979 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 18240bq2 4560y2 54720dm2 91200ht2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations