Cremona's table of elliptic curves

Curve 18240n2

18240 = 26 · 3 · 5 · 19



Data for elliptic curve 18240n2

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 19+ Signs for the Atkin-Lehner involutions
Class 18240n Isogeny class
Conductor 18240 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 4135886438400 = 214 · 312 · 52 · 19 Discriminant
Eigenvalues 2+ 3+ 5-  2  0  4  6 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-5265,111537] [a1,a2,a3,a4,a6]
j 985329269584/252434475 j-invariant
L 2.9218233853517 L(r)(E,1)/r!
Ω 0.73045584633793 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 18240cw2 1140c2 54720q2 91200cz2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations